Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2666, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531855

RESUMO

To broaden the substrate scope of microbial cell factories towards renewable substrates, rational genetic interventions are often combined with adaptive laboratory evolution (ALE). However, comprehensive studies enabling a holistic understanding of adaptation processes primed by rational metabolic engineering remain scarce. The industrial workhorse Pseudomonas putida was engineered to utilize the non-native sugar D-xylose, but its assimilation into the bacterial biochemical network via the exogenous xylose isomerase pathway remained unresolved. Here, we elucidate the xylose metabolism and establish a foundation for further engineering followed by ALE. First, native glycolysis is derepressed by deleting the local transcriptional regulator gene hexR. We then enhance the pentose phosphate pathway by implanting exogenous transketolase and transaldolase into two lag-shortened strains and allow ALE to finetune the rewired metabolism. Subsequent multilevel analysis and reverse engineering provide detailed insights into the parallel paths of bacterial adaptation to the non-native carbon source, highlighting the enhanced expression of transaldolase and xylose isomerase along with derepressed glycolysis as key events during the process.


Assuntos
Pseudomonas putida , Xilose , Xilose/metabolismo , Pseudomonas putida/genética , Transaldolase/genética , Engenharia Metabólica , Via de Pentose Fosfato
2.
Nat Commun ; 13(1): 5622, 2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153309

RESUMO

Escherichia coli phage SU10 belongs to the genus Kuravirus from the class Caudoviricetes of phages with short non-contractile tails. In contrast to other short-tailed phages, the tails of Kuraviruses elongate upon cell attachment. Here we show that the virion of SU10 has a prolate head, containing genome and ejection proteins, and a tail, which is formed of portal, adaptor, nozzle, and tail needle proteins and decorated with long and short fibers. The binding of the long tail fibers to the receptors in the outer bacterial membrane induces the straightening of nozzle proteins and rotation of short tail fibers. After the re-arrangement, the nozzle proteins and short tail fibers alternate to form a nozzle that extends the tail by 28 nm. Subsequently, the tail needle detaches from the nozzle proteins and five types of ejection proteins are released from the SU10 head. The nozzle with the putative extension formed by the ejection proteins enables the delivery of the SU10 genome into the bacterial cytoplasm. It is likely that this mechanism of genome delivery, involving the formation of the tail nozzle, is employed by all Kuraviruses.


Assuntos
Bacteriófagos , Fosmet , Podoviridae , Bacteriófagos/genética , Bacteriófagos/metabolismo , DNA Viral/genética , Genoma Viral/genética , Podoviridae/genética
3.
mSphere ; 6(3)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980677

RESUMO

Staphylococcus epidermidis is a leading opportunistic pathogen causing nosocomial infections that is notable for its ability to form a biofilm and for its high rates of antibiotic resistance. It serves as a reservoir of multiple antimicrobial resistance genes that spread among the staphylococcal population by horizontal gene transfer such as transduction. While phage-mediated transduction is well studied in Staphylococcus aureus, S. epidermidis transducing phages have not been described in detail yet. Here, we report the characteristics of four phages, 27, 48, 456, and 459, previously used for S. epidermidis phage typing, and the newly isolated phage E72, from a clinical S. epidermidis strain. The phages, classified in the family Siphoviridae and genus Phietavirus, exhibited an S. epidermidis-specific host range, and together they infected 49% of the 35 strains tested. A whole-genome comparison revealed evolutionary relatedness to transducing S. aureus phietaviruses. In accordance with this, all the tested phages were capable of transduction with high frequencies up to 10-4 among S. epidermidis strains from different clonal complexes. Plasmids with sizes from 4 to 19 kb encoding resistance to streptomycin, tetracycline, and chloramphenicol were transferred. We provide here the first evidence of a phage-inducible chromosomal island transfer in S. epidermidis Similarly to S. aureus pathogenicity islands, the transfer was accompanied by phage capsid remodeling; however, the interfering protein encoded by the island was distinct. Our findings underline the role of S. epidermidis temperate phages in the evolution of S. epidermidis strains by horizontal gene transfer, which can also be utilized for S. epidermidis genetic studies.IMPORTANCE Multidrug-resistant strains of S. epidermidis emerge in both nosocomial and livestock environments as the most important pathogens among coagulase-negative staphylococcal species. The study of transduction by phages is essential to understanding how virulence and antimicrobial resistance genes spread in originally commensal bacterial populations. In this work, we provide a detailed description of transducing S. epidermidis phages. The high transduction frequencies of antimicrobial resistance plasmids and the first evidence of chromosomal island transfer emphasize the decisive role of S. epidermidis phages in attaining a higher pathogenic potential of host strains. To date, such importance has been attributed only to S. aureus phages, not to those of coagulase-negative staphylococci. This study also proved that the described transducing bacteriophages represent valuable genetic modification tools in S. epidermidis strains where other methods for gene transfer fail.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Ilhas Genômicas/genética , Plasmídeos/genética , Fagos de Staphylococcus/genética , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/virologia , Transdução Genética , Humanos , Infecções Estafilocócicas/microbiologia , Fagos de Staphylococcus/classificação , Fagos de Staphylococcus/efeitos dos fármacos , Virulência
4.
Sci Rep ; 9(1): 5475, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940900

RESUMO

Lytic bacteriophages are valuable therapeutic agents against bacterial infections. There is continual effort to obtain new phages to increase the effectivity of phage preparations against emerging phage-resistant strains. Here we described the genomic diversity of spontaneous host-range mutants of kayvirus 812. Five mutant phages were isolated as rare plaques on phage-resistant Staphylococcus aureus strains. The host range of phage 812-derived mutants was 42% higher than the wild type, determined on a set of 186 methicillin-resistant S. aureus strains representing the globally circulating human and livestock-associated clones. Comparative genomics revealed that single-nucleotide polymorphisms from the parental phage 812 population were fixed in next-step mutants, mostly in genes for tail and baseplate components, and the acquired point mutations led to diverse receptor binding proteins in the phage mutants. Numerous genome changes associated with rearrangements between direct repeat motifs or intron loss were found. Alterations occurred in host-takeover and terminal genomic regions or the endolysin gene of mutants that exhibited the highest lytic activity, which implied various mechanisms of overcoming bacterial resistance. The genomic data revealed that Kayvirus spontaneous mutants are free from undesirable genes and their lytic properties proved their suitability for rapidly updating phage therapeutics.


Assuntos
Bacteriófagos/genética , Meticilina/farmacologia , Mutação , Staphylococcus aureus/crescimento & desenvolvimento , Composição de Bases , Farmacorresistência Bacteriana , Tamanho do Genoma , Genoma Viral , Genômica , Polimorfismo de Nucleotídeo Único , Staphylococcus aureus/virologia
5.
Folia Microbiol (Praha) ; 64(1): 121-126, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29923129

RESUMO

Staphylococcus aureus may be a highly virulent human pathogen, especially when it is able to form a biofilm, and it is resistant to antibiotic. Infections caused by these bacteria significantly affect morbidity and mortality, primarily in hospitalized patients. Treatment becomes more expensive, more toxic, and prolonged. This is the reason why research on alternative therapies should be one of the main priorities of medicine and biotechnology. A promising alternative treatment approach is bacteriophage therapy. The effect of the anti-staphylococcal bacteriophage preparation Stafal® on biofilm reduction was assessed on nine S. aureus strains using both sonication with subsequent quantification of surviving cells on the catheter surface and evaluation of biofilm reduction in microtiter plates. It was demonstrated that the bacteriophages destroy planktonic cells very effectively. However, to destroy cells embedded in the biofilm effectively requires a concentration at least ten times higher than that provided by the commercial preparation. The catheter disc method (CDM) allowed easier comparison of the effect on planktonic cells and cells in a biofilm than the microtiter plate (MTP) method.


Assuntos
Anti-Infecciosos , Biofilmes , Staphylococcus aureus Resistente à Meticilina/virologia , Infecções Estafilocócicas/microbiologia , Fagos de Staphylococcus/fisiologia , Staphylococcus aureus/virologia , Técnicas Bacteriológicas , Contagem de Colônia Microbiana , Humanos , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Viabilidade Microbiana , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/isolamento & purificação
6.
Viruses ; 10(4)2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29617332

RESUMO

Staphylococcus aureus is a major causative agent of infections associated with hospital environments, where antibiotic-resistant strains have emerged as a significant threat. Phage therapy could offer a safe and effective alternative to antibiotics. Phage preparations should comply with quality and safety requirements; therefore, it is important to develop efficient production control technologies. This study was conducted to develop and evaluate a rapid and reliable method for identifying staphylococcal bacteriophages, based on detecting their specific proteins using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling that is among the suggested methods for meeting the regulations of pharmaceutical authorities. Five different phage purification techniques were tested in combination with two MALDI-TOF MS matrices. Phages, either purified by CsCl density gradient centrifugation or as resuspended phage pellets, yielded mass spectra with the highest information value if ferulic acid was used as the MALDI matrix. Phage tail and capsid proteins yielded the strongest signals whereas the culture conditions had no effect on mass spectral quality. Thirty-seven phages from Myoviridae, Siphoviridae or Podoviridae families were analysed, including 23 siphophages belonging to the International Typing Set for human strains of S. aureus, as well as phages in preparations produced by Microgen, Bohemia Pharmaceuticals and MB Pharma. The data obtained demonstrate that MALDI-TOF MS can be used to effectively distinguish between Staphylococcus-specific bacteriophages.


Assuntos
Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fagos de Staphylococcus/classificação , Produtos Biológicos/isolamento & purificação , Fracionamento Químico/métodos , Análise por Conglomerados , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fagos de Staphylococcus/metabolismo , Staphylococcus aureus/virologia , Proteínas Virais/análise , Proteínas Virais/química , Replicação Viral
7.
Virus Genes ; 54(1): 130-139, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28852930

RESUMO

The spontaneous host-range mutants 812F1 and K1/420 are derived from polyvalent phage 812 that is almost identical to phage K, belonging to family Myoviridae and genus Kayvirus. Phage K1/420 is used for the phage therapy of staphylococcal infections. Endolysin of these mutants designated LysF1, consisting of an N-terminal cysteine-histidine-dependent aminohydrolase/peptidase (CHAP) domain and C-terminal SH3b cell wall-binding domain, has deleted middle amidase domain compared to wild-type endolysin. In this work, LysF1 and both its domains were prepared as recombinant proteins and their function was analyzed. LysF1 had an antimicrobial effect on 31 Staphylococcus species of the 43 tested. SH3b domain influenced antimicrobial activity of LysF1, since the lytic activity of the truncated variant containing the CHAP domain alone was decreased. The results of a co-sedimentation assay of SH3b domain showed that it was able to bind to three types of purified staphylococcal peptidoglycan 11.2, 11.3, and 11.8 that differ in their peptide bridge, but also to the peptidoglycan type 11.5 of Streptococcus uberis, and this capability was verified in vivo using the fusion protein with GFP and fluorescence microscopy. Using several different approaches, including NMR, we have not confirmed the previously proposed interaction of the SH3b domain with the pentaglycine bridge in the bacterial cell wall. The new naturally raised deletion mutant endolysin LysF1 is smaller than LysK, has a broad lytic spectrum, and therefore is an appropriate enzyme for practical use. The binding spectrum of SH3b domain covering all known staphylococcal peptidoglycan types is a promising feature for creating new chimeolysins by combining it with more effective catalytic domains.


Assuntos
Endopeptidases/genética , Endopeptidases/metabolismo , Especificidade de Hospedeiro , Myoviridae/enzimologia , Peptidoglicano/metabolismo , Deleção de Sequência , Staphylococcus/virologia , Endopeptidases/isolamento & purificação , Proteínas Mutantes/genética , Proteínas Mutantes/isolamento & purificação , Proteínas Mutantes/metabolismo , Myoviridae/genética , Myoviridae/fisiologia , Ligação Proteica , Domínios Proteicos
8.
Proc Natl Acad Sci U S A ; 113(33): 9351-6, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27469164

RESUMO

Bacteriophages from the family Myoviridae use double-layered contractile tails to infect bacteria. Contraction of the tail sheath enables the tail tube to penetrate through the bacterial cell wall and serve as a channel for the transport of the phage genome into the cytoplasm. However, the mechanisms controlling the tail contraction and genome release of phages with "double-layered" baseplates were unknown. We used cryo-electron microscopy to show that the binding of the Twort-like phage phi812 to the Staphylococcus aureus cell wall requires a 210° rotation of the heterohexameric receptor-binding and tripod protein complexes within its baseplate about an axis perpendicular to the sixfold axis of the tail. This rotation reorients the receptor-binding proteins to point away from the phage head, and also results in disruption of the interaction of the tripod proteins with the tail sheath, hence triggering its contraction. However, the tail sheath contraction of Myoviridae phages is not sufficient to induce genome ejection. We show that the end of the phi812 double-stranded DNA genome is bound to one protein subunit from a connector complex that also forms an interface between the phage head and tail. The tail sheath contraction induces conformational changes of the neck and connector that result in disruption of the DNA binding. The genome penetrates into the neck, but is stopped at a bottleneck before the tail tube. A subsequent structural change of the tail tube induced by its interaction with the S. aureus cell is required for the genome's release.


Assuntos
Genoma Viral , Myoviridae/genética , Myoviridae/ultraestrutura , Staphylococcus aureus/virologia , Proteínas do Capsídeo/química , Microscopia Crioeletrônica , Myoviridae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...